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Abstract Global and regional estimates of daily evapotranspiration are essential to our understanding of
the hydrologic cycle and climate change. In this study, we selected the radiation-based Priestly-Taylor Jet
Propulsion Laboratory (PT-JPL) model and assessed it at a daily time scale by using 44 flux towers. These
towers distributed in a wide range of ecological systems: croplands, deciduous broadleaf forest, evergreen
broadleaf forest, evergreen needleleaf forest, grasslands, mixed forests, savannas, and shrublands. A regional
land surface evapotranspiration model with a relatively simple structure, the PT-JPL model largely uses
ecophysiologically-based formulation and parameters to relate potential evapotranspiration to actual
evapotranspiration. The results using the original model indicate that the model always overestimates
evapotranspiration in arid regions. This likely results from the misrepresentation of water limitation and
energy partition in the model. By analyzing physiological processes and determining the sensitive
parameters, we identified a series of parameter sets that can increase model performance. The model with
optimized parameters showed better performance (R2 = 0.2–0.87; Nash-Sutcliffe efficiency (NSE) = 0.1–0.87)
at each site than the original model (R2 = 0.19–0.87; NSE =�12.14–0.85). The results of the optimization
indicated that the parameter β (water control of soil evaporation) was much lower in arid regions than in
relatively humid regions. Furthermore, the optimized value of parameter m1 (plant control of canopy
transpiration) was mostly between 1 to 1.3, slightly lower than the original value. Also, the optimized
parameter Topt correlated well to the actual environmental temperature at each site. We suggest that using
optimized parameters with the PT-JPL model could provide an efficient way to improve the
model performance.

1. Introduction

Evapotranspiration (ET) is an important land surface process in climatology and a nexus of the terrestrial
water, energy, and carbon cycles [Jung et al., 2010; Senay et al., 2011; Wang and Dickinson, 2012]. About
60% of annual land precipitation is returned to the atmosphere through the ET process [Baumgartner and
Reichel, 1975; Chahine, 1992; Oki and Kanae, 2006], and the associated latent heat of vaporization consumes
more than 50% of the absorbed net solar radiation [Trenberth and Smith, 2009; Vinukollu et al., 2011]. Thus,
accurately estimating the spatial distribution and temporal behavior of ET is important for environmental
simulation, climate change research, and irrigation and water resource management [Rango and Shalaby,
1998; Raupach, 2001; Keane et al., 2002; Dodds et al., 2005].

Fortunately, remote sensing data sets offer an opportunity for mapping the spatial distribution of ET at scales
ranging from regional to global [AghaKouchak et al., 2015]. Remote sensing-based ET estimation methods fall
into two broad categories: (1) empirical/statistical methods that relate ET to some easily obtained satellite-
derived variables (e.g., radiation, land surface temperature, and vegetation index) and (2) process-based
methods, which estimate ET on the basis of the Penman-Monteith equation [Monteith, 1965; Cleugh et al.,
2007; Mu et al., 2007, 2011], the Priestley-Taylor approach [Priestley and Taylor, 1972; Fisher et al., 2008], or
the residual method of the energy balance equation [Bastiaanssen et al., 1998; Su, 2002; Norman et al.,
1995]. Among them, the Priestly-Taylor Jet Propulsion Laboratory (PT-JPL) model proposed by Fisher et al.
[2008] has been widely used to estimate ET because of its minimal requirements for ground-based measure-
ments and its good performance [Feng et al., 2015; Michel et al., 2016; Zhu et al., 2016]. For example, Ershadi
et al. [2014] illustrated that the PT-JPL model provided the best results among four commonly used ET
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models across 20 flux towers. Using 45 globally distributed flux towers,McCabe et al. [2016] also reported that
the PT-JPL model provided the best statistical performance among four remote sensing-based ET models.

Nevertheless, there are deficiencies in the application of the PT-JPL model. The PT-JPL model is highly com-
plex with many ecophysiological parameters, which may vary with the environmental conditions, plant func-
tional types (PFTs), and other factors [Zhu et al., 2016]. Thus, there is a need to identify the parameters in the
PT-JPL model that do or do not have significant influence on model simulations across different biomes and
environmental conditions. The parameter sensitivity analysis (SA) method is capable of playing this role in
identifying sensitive parameters and can help concentrate efforts on model calibration and optimization
[Saltelli et al., 2000; Wagener et al., 2003]. Also, based on SA, the robustness of the model can be analyzed
for future modification and improvement [Fraedrich and Goldberg, 2000; Confalonieri et al., 2010]. In previous
studies, the parameter SA algorithm has been applied mainly to complex hydrological, ecological, crop, and
environmental models [Pappenberger et al., 2008; van Werkhoven et al., 2008; Yang, 2011; Nossent et al., 2011;
Fu et al., 2012; Zhang et al., 2013]. Using the PT-JPL model, Garcia et al. [2013] conducted a SA for all the
variables (including the forcing data and constant parameters) at only two arid sites (Sahelian savanna and
Mediterranean grasslands). To obtain more accurate data, the SA in the PT-JPL model should be applied
across a wider range of biomes and environmental conditions.

Previous studies have demonstrated that the Bayesian approach, such as Markov chain Monte Carlo
(MCMC), provides powerful new tools for optimizing model parameters and quantifying the influence of
uncertainties [Clark and Gelfand, 2006; Zhu et al., 2013, 2014]. However, MCMC-based approaches often suf-
fer from problems related to proper initialization and proposal density function, which may prevent the
algorithm from efficiently reaching convergence [Haario et al., 2006]. Alternatively, the Differential
Evolution Markov Chain (DE-MC) algorithm [Ter Braak, 2006] is designed for global optimization in real para-
meter spaces by combining the differential evolution algorithm of Price and Storn [1997]. Compared to the
MCMC-based approaches, the DE-MC algorithm is more suitable to draw inference on high-dimensional
models [Ter Braak, 2006]. However, limited studies have been conducted by using the DE-MC approach to
optimize the remote sensing-based ET models.

In this paper, we used the Moderate Resolution Imaging Spectroradiometer (MODIS) products (MOD13Q1)
and flux data from 44 eddy covariance flux towers located throughout the world as the forcing data. These
sites represent typical PFTs. The purpose of this work is (1) to identify the key parameters of the PT-JPL model
specific to different biomes and climate conditions by using SA with forcing data based on eddy flux data and
MODIS products and (2) to optimize the selected sensitive parameters using the DE-MC scheme for different
PFTs and climatic conditions.

2. Data

To identify the sensitive parameters and evaluate the performance of the PT-JPL model across different
biomes, we used observed data from 44 flux sites (Figure 1 and Table 1), that included 41 sites from the
FLUXNET [Baldocchi et al., 2001; Jung et al., 2011] and three sites from the Coordinated Enhanced
Observation Network of China [Liu et al., 2011]. These sites extend across four continents (Asia, Oceania,
North America, and South America) and represent eight typical PFTs that follows the International
Geosphere–Biosphere Programme classification: grasslands (five sites), croplands (five sites), savannas and
woody savannas (SA, nine sites), shrublands (seven sites), deciduous broadleaf forest (DBF, five sites), ever-
green broadleaf forest (EBF, two sites), evergreen needleleaf forest (ENF, five sites), and mixed forest (MF,
six sites). The data used in the analysis are all available as the so-called “Level 2 and Level 3 with gaps” files
at the data repository. The only adjustments made to these data were as follows: (i) if the measured energy
imbalance (net radiationminus latent, sensible, and ground heat flux) exceeds 300W ·m�2, the fluxes for that
half hour were treated as missing, (ii) if data gaps were less than 6 h in length, the missing data were esti-
mated by using the linear interpolation method, and (iii) any day after interpolation which did not have a
complete diurnal cycle of necessary measurements for model evaluations was not used in the analysis.
After these adjustments, the energy balance closure (the sum of sensible and latent heat flux against avail-
able energy) across the selected sites ranges from 71% to 95%with a mean of 82.5%, and the intercept values
range �11.6–22.8W ·m�2 with a mean of 4.18� 8.51W ·m�2 (see details in supporting information). Thus,
the data quality at the selected sites was relatively high and suitable for the purposes of model performance

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025768

ZHANG ET AL. PARAMETER ANALYSIS FOR PT-JPL MODEL 231



evaluations. To account for the biased low latent heat flux measurements due to the energy imbalance at our
selected sites (5%–19%), the directly measured latent heat fluxes were also corrected by using the residual
energy balance method and the Bowen ratio method [Twine et al., 2000; Jung et al., 2010] (supporting infor-
mation). In our prior test study, the model performances were evaluated against both the directly observed
and the corrected latent heat fluxes. It was found that the within-site temporal variations of the observed
(corrected) latent heat flux were well captured by the model, and its performances become better at some
sites (a total of 12 sites) when evaluating against the corrected latent heat fluxes in comparison with that
against the directly observed latent heat flux data. However, at some sites (especially at the arid regions)
the model performances are not satisfactory regardless of evaluating against the directly observed or the
corrected latent heat flux data. Thus, the uncertainty in model parameters may be a main source of the
disagreements between observed and simulated latent heat fluxes.

We acquired both the normalized difference vegetation index (NDVI) and the enhanced vegetation index
(EVI) fromMODIS products (MOD13Q1, http://modis.gsfc.nasa.gov/). It can provide a 16 day composite image
with a spatial resolution of 250m.

3. Model and Methods
3.1. PT-JPL Model

The Priestley-Taylor (PT) [Priestley and Taylor, 1972] equation is a simplified, but successful model for estimat-
ing the potential evapotranspiration (PET) from wet surfaces. Using a series of indicators based on atmo-
spheric and ecophysiological constraints, Fisher et al. [2008] proposed the PT-JPL model to downscale the
PET to actual evapotranspiration. In the PT-JPL model the total ET is partitioned into canopy transpiration
(LEc), soil evaporation (LEs), and interception evaporation (LEi). These are defined as

LEc ¼ 1� fwetð Þf gf tf mα Δ
Δþ γ

Rnc (1)

Figure 1. Flux sites used in the study. Ecosystems are identified with the International Geosphere-Biosphere Programme.
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LEs ¼ fwet þ f sm 1� fwetð Þð Þα Δ
Δþ γ

Rns � Gð Þ (2)

LEi ¼ fwetα
Δ

Δþ γ
Rnc (3)

Table 1. Main Characteristics of Selected Sitesa

Site ID Country Lat Lon Elevation Climate P T Year L Source References

Croplands
S1 AU-Otw Australia �38.53 142.82 54 Cfb 800 13.8 2008–2010 3 OzFlux Jung et al. [2009]
S2 US-Ne3 USA 41.18 �96.44 363 Dfa 783 10.1 2009–2011 2 AmeriFlux Ershadi et al. [2014]
S3 US-Ro1 USA 44.71 �93.09 290 Dfa 879 6.4 2010–2012 2 AmeriFlux Xue and Pan [2008]
S4 US-Snd USA 38.04 �121.75 �5 Csb 358 15.6 2012–2014 2 AmeriFlux Ryu et al. [2012]
S5 Yingke China 38.86 100.41 1519 Bwk 130 7.3 2008–2009 2 RCE-TEA Li et al. [2009]
Deciduous Broadleaf Forest
S6 US-MMS USA 39.32 �86.41 275 Cfa 1032 10.9 2012–2014 2 AmeriFlux Fu et al. [2014]
S7 US-MOz USA 38.74 �92.2 219.4 Cfa 986 12.1 2011–2013 2 AmeriFlux Ershadi et al. [2014]
S8 US-Oho USA 41.55 �83.84 230 Dfa 849 10.1 2009–2011 2 AmeriFlux Stoy et al. [2014]
S9 US-Slt USA 39.91 �74.6 30 Dfa 1138 11 2010–2012 2 AmeriFlux Hollinger et al. [2010]
S10 US-WCr USA 45.81 �90.08 520 Dfb 787 4 2012–2014 2 AmeriFlux Stoy et al. [2014]
Evergreen Broadleaf Forest
S11 BR-Sa3 Brazil �3.02 �54.97 100 Am 2043 26.1 2002–2004 2 AmeriFlux Stoy et al. [2014]
S12 MY-PSO Malaysia 2.97 102.31 75 Af 1865 25.3 2007–2009 2 AsiaFlux Kamakura et al. [2011]
Evergreen Needelleaf Forest
S13 CA-Qcu Canada 49.27 �74.04 392.3 Dfc 950 0.1 2008–2010 2 AmeriFlux Stoy et al. [2014]
S14 CA-SF1 Canada 54.49 �105.82 536 Dfc 470 0.4 2004–2006 2 AmeriFlux Stoy et al. [2014]
S15 US-Blk USA 44.16 �103.65 1718 Dfb 574 6.2 2006–2008 2 AmeriFlux Xue and Pan [2008]
S16 US-NC2 USA 35.8 �76.67 5 Cfa 1320 16.6 2006–2008 2 AmeriFlux Stoy et al. [2013]
S17 US-NR1 USA 40.03 �105.55 3050 Dfc 800 1.5 2011–2013 2 AmeriFlux Stoy et al. [2013]
Grasslands
S18 Arou China 38.04 100.46 3033 ET 396 0.7 2008–2009 2 RCE-TEA Zhu et al. [2013, 2014]
S19 AU-Stp Australia �17.15 133.35 250 Bsh 640 25.8 2014–2015 3 OzFlux Beringer et al. [2016]
S20 Dongsu China 44.09 113.57 970 Bwk 287 3.8 2008–2009 2 RCE-TEA Zhu et al. [2013, 2014]
S21 US-FPe USA 48.31 �105.1 634 BSk 335 5.5 2006–2008 2 AmeriFlux Stoy et al. [2013]
S22 US-Wkg USA 31.74 �109.94 1531 BSk 407 15.6 2012–2014 2 AmeriFlux Stoy et al. [2013]
Mixed Forests
S23 CN-Cha China 42.4 128.1 731 Dwb 713 3.6 2004–2005 2 AsiaFlux Stoy et al. [2013]
S24 JP-Kah Japan 33.13 130.71 165 Cfa 2037 14.7 2006–2008 2 AsiaFlux Shimizu [2007]
S25 US-Los USA 46.08 �89.98 480 Dfb 828 4.1 2006–2008 2 AmeriFlux Stoy et al. [2013]
S26 US-NC1 USA 35.81 �76.71 5 Cfa 1320 16.6 2007–2009 2 AmeriFlux Stoy et al. [2013]
S27 US-SP2 USA 29.76 �82.24 50 Cfa 1314 20.1 2007–2009 2 AmeriFlux Stoy et al. [2013]
S28 US-Syv USA 46.24 �89.35 540 Dfb 826 3.81 2005–2007 2 AmeriFlux Stoy et al. [2013]
Savannas/Woody Savannas
S29 AU-Ade Australia -13.08 131.12 90 Aw 1730 27.4 2007–2009 3 OzFlux Beringer et al. [2016]
S30 AU-Cum Australia -33.61 150.72 200 Cfa 800 18.5 2013–2015 3 OzFlux Beringer et al. [2016]
S31 AU-How Australia -12.49 131.15 64 Aw 1750 27 2013–2015 3 OzFlux Beringer et al. [2016]
S32 AU-Whr Australia -36.67 145.03 165 Cfb 558 15 2013–2015 3 OzFlux Beringer et al. [2016]
S33 JP-Mas Japan 36.05 140.03 12 Cfa 1389 14.6 2003–2005 2 AsiaFlux Ryu et al. [2012]
S34 US-FR3 USA 29.94 �97.99 232 Cfa 869 19.6 2010–2012 2 AmeriFlux Heinsch et al. [2004]
S35 US-KS2 USA 28.61 �80.67 3 Cwa 1294 21.7 2004–2006 2 AmeriFlux Stoy et al. [2013]
S36 US-Ton USA 38.43 �120.97 177 Csa 559 15.8 2012–2014 2 AmeriFlux Stoy et al. [2014]
S37 US-Var USA 38.41 �120.95 129 Csa 559 15.8 2012–2014 2 AmeriFlux Stoy et al. [2013]
Shrublands
S38 AU-ASM Australia �22.28 133.25 606 Bsh 306 21 2011–2013 3 OzFlux Beringer et al. [2016]
S39 AU-Cpr Australia �34 140.59 32 Bsk 240 17.3 2012–2014 3 OzFlux Meyer et al. [2015]
S40 MX-Lpa Mexico 24.13 �110.44 21 Bwh 182 23.6 2006–2008 2 AmeriFlux Bell et al. [2012]
S41 US-Ivo USA 68.49 �155.75 568 ET 304 -8.3 2005–2007 2 AmeriFlux Wang et al. [2010]
S42 US-SRC USA 3144.91 �110.84 991 Bsk 310 20 2010–2012 2 AmeriFlux Bunting et al. [2014]
S43 US-SRM USA 31.82 �110.87 1120 Bsk 380 17.9 2012–2014 2 AmeriFlux Scott et al. [2009]
S44 US-Whs USA 31.74 �110.05 1370 Bsk 320 17.6 2012–2014 2 AmeriFlux Wang et al. [2010]

aP and T represent the annual precipitation (mm) and average temperature (°C), respectively. Climate represents the Koppen Climate Classification and L is the
processing level of data.
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where fwet is the relative surface wetness (unitless), fg is the green canopy fraction (unitless), ft is the plant
temperature constraint (unitless), fm is the plant moisture constraint (unitless), fsm is the soil moisture con-
straint (unitless), α is the PT coefficient (1.26), Δ is the slope of the saturated vapor pressure curve
(kPa °C

�1), γ is the psychrometric constant (0.066 kPa °C
�1), G is the soil heat flux (W ·m�2), and Rnc is the

net radiation for the canopy (W ·m�2) and is given by Rnc = Rn� Rns, where Rn is the net radiation (W ·m�2)
and Rns is the net radiation for surface soil. Rns can be calculated as [Fisher et al., 2008; Beer, 1852;
Denmead and Millar, 1976]

Rns ¼ Rnexp �kRnLAIð Þ (4)

where kRn is the extinction coefficient [Impens and Lemeur, 1969] and LAI is the leaf area index (m2 ·m�2),
expressed as [Fisher et al., 2008; Ross, 1976]

LAI ¼ ln 1� f IPARð Þ½ �
kPAR

(5)

with kPAR = 0.5 and fIPAR is the fraction of photosynthesis active radiation (PAR) intercepted by canopy. The
bio-physiological constraint functions are calculated as

fwet ¼ RH4 (6)

f g ¼ fAPAR
f IPAR

(7)

f t ¼ exp � Ta � Topt
Topt

� �2
" #( )

(8)

f m ¼ fAPAR
fAPARmax

(9)

f sm ¼ RH
VPD=β (10)

where RH is relative humidity (%), Ta is the air temperature (°C), Topt is the optimum plant growth temperature
(°C), VPD is vapor pressure deficit (kPa), β is the sensitivity for fsm to VPD (kPa), and fAPAR is the fraction of PAR
absorbed by canopy. fIPAR and fAPAR are defined as [Fisher et al., 2008; Gao and Li, 2000; Huete et al., 2002]

fAPAR ¼ m1EVIþ b1 (11)

f IPAR ¼ m2NDVIþ b2 (12)

where EVI is the enhanced vegetation index; NDVI is the normalized difference vegetation index; andm1, b1,
m2, and b2 are parameters. There are eight specific parameters in the PT-JPLmodel that need to be estimated
(Table 2).

3.2. Global Sensitivity Analysis

The Sobol’ method [Sobol, 1990, 2001] is a popular global sensitivity analysis based on variance decomposi-
tion and the model is represented in the following functional form

y ¼ f X; θ
!� �

(13)

Table 2. Parameters and Prior Ranges of the PT-JPL Model

Name Intervening Variable Initial Value References Prior Range References

m1 fAPAR fm fg 1.2 × 1.136 Gao and Li [2000]; Huete et al. [2002] [0, min{m2NDVI + b2� b1}] This study
b1 fAPAR fm fg 1.2 × (�0.04) Gao and Li [2000]; Huete et al. [2002] [�0.039, �0.025] Garcia et al. [2013]
m2 fIPAR fg LAI 1 Fisher et al. [2008] [0.9, 1.1] Yao et al. [2013]
b2 fIPAR fg LAI �0.05 Fisher et al. [2008] [�0.06, �0.04] Garcia et al. [2013]
Topt ft 25 Garcia et al. [2013]; Yao et al. [2014] [5, 40] This study
β fsm 1 Fisher et al. [2008] [0, 1] This study
kRn Rns 0.6 Impens and Lemeur [1969] [0.3, 0.6] Garcia et al. [2013]
kPAR LAI 0.5 Ross [1976] [0.3, 0.6] Garcia et al. [2013]
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where y is the model output (or the result of objective function), X is the input variable, and θ
!

is the para-
meter vector. The total variance of function D(y) can be decomposed into summands of increasing dimen-
sionality, which can be expressed as

D yð Þ ¼ ∑
k

i¼1
Di þ ∑

k�1

i¼1
∑
k

j¼iþ1
Dij þ⋯þD1;…;k (14)

where Di is the partial variance with the first-order index of θi on the model output y, Dij is the partial variance
with the second-order index of the ith and jth parameter interactions, k is the total number of parameters. In
this method, the sensitivity effect is characterized by the ratio of the partial variances to the total variance
[Zhang et al., 2013]:

First-order index Si ¼ Di

D
(15)

Second-order index Sij ¼ Dij

D
(16)

Total-order index STi ¼ Si þ ∑
j≠i
Sij þ⋯ ¼ 1� D∼i

D
(17)

where Si is a measure ratio from the main effect of the individual parameter θi to the total model variance D,
Sij defines the sensitivity that results from the interactions between θi and θj, and STi represents the main
effect of θi and its interactions with the other parameters and can be calculated by the variance D~i, which
is the variation of all parameters except θi [Homma and Saltelli, 1996; Nossent et al., 2011].

In our study, we used Latin hypercube sampling [McKay, 1988], a multidimensional, stratified sampling
method [Osidele and Beck, 2001; Sieber and Uhlenbrook, 2005], to sample the available parameter space. A
detailed description of the implemented computational process can be found in Sobol [1990, 2001], Hall
et al. [2005], Nossent et al. [2011], and Zhang et al. [2013]. We also used the thresholds to differentiate highly
sensitive parameters that contributed at least 10% of the overall model output variance and sensitive
parameters that contributed at least 1% of the overall model output variance. When the contributions to
the overall model output variance were less than 1%, we assumed that the parameters were nonsensitive
[Tang et al., 2007].

An important condition for running the PT-JPL model is the feasible range of the variable fg. The energy
absorbed by the canopy should not be greater than the intercept of energy (i.e., fg ≤ 1); hence, restrictions
must be placed on the prior range ofm1 based on the related parameters: b1,m2, and b2, which are the basic
parameters of fg. Additionally, we used a sample size of 10,000 to calculate the first-order and total-order sen-
sitivity index of the eight parameters (Table 2) of the PT-JPL model.

3.3. Parameter Optimization With Differential Evolution Markov Chain

According to the Bayes theorem, the posterior probability density function (PDF) of model parameters is pro-
portional to their prior PDF and the likelihood function and can be calculated as

p θjOð Þ∝p Ojθð Þp θð Þ (18)

where θ are the parameter sets; O are the observed data sets; p(θ|O) is the posterior probability distribution;
p(θ) is the prior probability distribution of parameter θ, which is chosen as uniform distributions with speci-
fied prior ranges (Table 2); and p(O|θ) is the likelihood function, which reflects the influence of the observa-
tion data sets on parameter identification. The likelihood function can be expressed as [Zhu et al., 2014]

p O tð Þjθð Þ ¼ ∏
T

t¼1

1ffiffiffiffiffiffi
2π

p
σ2
exp � O tð Þ � S tð Þ½ �2

2σ2

 !
(19)

where T is the total length of observation;O(t) and S(t) are observed and simulated values at time t (t= 1, 2,…,
T), respectively; and σ is the standard deviation of the model error that is assumed to be unchanged during
the observation time [Braswell et al., 2005], and σ can be expressed as

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

∑
T

t¼1
O tð Þ � S tð Þ½ �2

s
(20)
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The posterior distribution was sampled by using the DE-MCmethod, which was proposed by Ter Braak [2006]
for global optimization in real parameter spaces. In the DE-MC method, N chains are run in parallel and the
proposals are generated on the basis of two randomly selected chains, the difference of which is multiplied
by a scaling factor, and added to the current chain:

θp ¼ θi þ γ θR1 � θR2ð Þ þ e (21)

where θp is the proposed parameter set; θR1 and θR2 represent the randomly selected chains without repla-
cement from the population θ � i (the population without θi); e is drawn from a symmetrical distribution with
a small variance compared to that of the target, but with unbounded support, e.g., e~N(0,b)d with b small
and d being the parameter dimension; and γ is the scaling factor which can be set to be 2:38=

ffiffiffiffiffiffi
2d

p

[Roberts and Rosenthal, 2001]. The Metropolis ratio is then used to decide whether to accept or reject the pro-
posals [Moreno et al., 2016].

3.4. Evaluation and Objective Function

Both the sensitivity analysis and optimization for the model need to consider goodness-of-fit metrics. We
used the statistical metric root-mean-square error (RMSE) to evaluate the model output. The indicator can
be calculated as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

∑
T

t¼1
O tð Þ � S tð Þ½ �2

s
(22)

We also used the Nash-Sutcliffe efficiency (NSE) coefficient [Nash and Sutcliffe, 1970; Legates and McCabe,
1999] to evaluate the performance of the PT-JPL model:

NSE ¼ 1�
∑
T

t¼1
O tð Þ � S tð Þ½ �2

∑
T

t¼1
O tð Þ � O
� �2 (23)

where Ō is the mean of observed values. NSE values range between�∞ to 1. Generally, as the value nears 1, a
better simulation is indicated [Moriasi et al., 2007; Ershadi et al., 2014].

Additionally, to evaluate the final performance of the model, we used a Taylor diagram [Taylor, 2001]
since this method is especially useful in testing multiple aspects of complex models [International
Panel on Climate Change, 2001]. Generally, the Taylor diagram characterizes a single point to indicate
three different statistical relationships between the “test” field (simulation) and the “truth” field (obser-
vation) (correlation, ratio of the standard deviations, and root-mean-square difference of the patterns)
[Zhu et al., 2016]. The statistics of each point can be scored using

S ¼ 2 1þ Rð Þ
σm=σoð Þ þ 1= σm=σoð Þ½ �2 (24)

where S is the model skill metric bound by zero and unity (unity indicates agreement with observa-
tions), σm is the standard deviation of the simulation, and σo is the standard deviation of the
observation.

4. Results
4.1. Parameter Sensitivity Analysis

The sensitivity index (SI) of model parameters across different sites based on the RMSE metric is illustrated
in Figure 2. Based on threshold in Tang et al. [2007], three parameters (m1, Topt, and β) across all the
biomes were most sensitive, while other parameters were nonsensitive to the model output. Figure 2a
(Si) shows that the parameter m1 has the most significant single influence on the model ET simulation
across different biomes (SI value varies from 2% at site US-FR3 to 98% at site CN-Cha; mean value was
48%). Also, the parameters Topt and β had high first-order SI, although their SI values were 2–3 times
smaller than that of m1. Moreover, Topt has a higher first-order SI than β in the forest biomes (mixed
forest, evergreen broadleaf forest, and deciduous broadleaf forest). The contribution of the remaining
parameters at each site is almost negligible.
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Similarly, these three parameters are also highly sensitive with a total order index greater than 10% across
most sites (Figure 2b). The parameter m1 has the most significant influence, accounting for a maximum of
99% (at US-Ton), a minimum of 14% (at MX-Lpa), and a mean of 65% of the total variance. Combined, these
three parameters (m1, Topt, and β) are the most influential on the model output. It should be noted that the
first-order SI of the parameters contributed the highest proportion of the total order SI at most sites.
Furthermore, the forest biomes, especially the DBF, EBF, and MF, have larger total order SI of m1 than the
other parameters. It seems that m1, related to the canopy constraint factor (fg), has more interactions with
other parameters in the forest biomes. Additionally, it is interesting to note the proportion of the influence
ofm1 interactions on the model output to the total order SI increases gradually in comparison with the para-
meter Topt and β. Overall, the output of the PT-JPL model is highly sensitive to the parametersm1, Topt, and β
across the different biomes.

4.2. Parameter Optimization

The posterior parameter distributions (medians and 95% probability intervals) of the three sensitive para-
meters are shown in Figure 3. The results indicate that the Bayesian optimization with DE-MC method
successfully reduced the assumed prior uncertainties of the sensitive parameters in most sites. Topt
and β showed relatively large uncertainty and variability (widely spread on the prior ranges) in
some sites.

Figure 3. Posterior distribution of the parameters at each site. The vertical bars indicate the 95% probability intervals; the
dot line represents the original parameter value.

Figure 2. Results of sensitivity analysis using the Sobol’ method. (a) and (b) represent the first and total order sensitivity
index, respectively. Different colors indicate different biomes.
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The posterior median values of β in the AU-Otw, AU-Cum, AU-Whr, US-Ton, AU-ASM, AU-Cpr, MX-Lpa, and US-
SRC sites were very small (<0.2). At US-Ne3, Dongsu, US-FR3, US-Var, US-Ivo, and US-SRM, as well as the US-
Whs site, the optimized values of β remained within a relatively low range (0.3–0.5). The optimized values of β
at most sites (e.g., US-Ro1, US-Snd, US-MMS, Arou, and AU-How) range from 0.6 to 1. Thus, it seems that the
responses of surface constraint (β) to soil water content should be enhanced at different sites, especially in
arid environments.

The optimizedmedian value ofm1 ranged from 0.63 (US-KS2) to 1.39 (AU-Stp) with a mean value of 1.1 across
different biomes (Figure 3). Generally, the posterior median values of m1 are relatively low (around 0.8–1.3)
across mostly forest biomes (DBF and MF). However, the posterior median values in the some savannas
and grasslands sites are slightly higher, ranging from 1.1 to 1.4. Thus, we concluded that the parameter m1

was properly optimized for each site because the 95% posterior distribution of m1 was narrow. Notably,
the optimizedmeanmedian value of different biomes is slightly lower than the original value (1.36) proposed
by Fisher et al. [2008].

Topt exhibited a very wide variation across different biomes with a minimum value of 11°C (Arou) and a max-
imum value of 29°C (AU-Stp) (Figure 3). The parameter Topt represents the optimum plant growth tempera-
ture under specific environments. Thus, we investigated the relationship between optimized Topt and the
mean air temperature (Ta) during growing season and found the correlation between these variables is rela-
tively high (R2 = 0.55; Figure 4). Some authors have proposed that Topt should be dynamically calculated
based on the maximum temperature at the time of peak canopy activity (hereafter referred to as the dynamic
method [Potter et al., 1993; Fisher et al., 2008]). The optimized values of Topt obtained by our procedure also
exhibited good agreement with those calculated by using the dynamic method (Figure 4), suggesting that
our optimized values are reasonable.

4.3. Model Performance: PT-JPL Model With Optimized Parameters

Figure 5 and Table 3 compare the model performance by using the optimized and the original para-
meters against the directly observed latent heat fluxes. In addition, the model performances evaluating
against the corrected latent heat fluxes were presented in the supporting information. Generally, the
models had similar R ranges (mostly ranging between 0.6 and 0.9); however, the model using optimized
parameters performed better with σnorm (normalized standard deviations) nearer to 1 (Figure 5), lower
bias and RMSE, and greater NSE (Table 3). The model using original parameters overestimated evapotran-
spiration in most cases (particularly in shrublands) (i.e., NSE< 0, σnorm> 1.5).

Figure 4. Relationships between optimized Topt and mean air temperature and dynamic Topt for different biomes during
the study period.
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As expected, the performance of both models showed a high degree of site-specific variation across different
biomes. For example, both performed well at some grasslands (Arou, AU-Stp, and US-FPe) and croplands
(US-Ne3, US-Ro1, and US-Snd) sites. However, at most sites (especially Dongsu, MX-Lpa, and AU-Cpr), the ori-
ginal model overestimated evapotranspiration (Figure 5 and Table 3). The optimized model across the differ-
ent sites showed results of σnorm clustered around 1, which is more in line with observed measurements than
the results for the original model.

Generally, the original model performance was satisfactory across some croplands and grasslands (except
for AU-Otw and Dongsu), with R2 values ranging from 0.31 to 0.84 and NSE values greater than 0.31
(Table 3). At 14 of the 44 sites, the original model generated negative NSE, because it overestimated
ET significantly, with bias< 0 (Table 3). In contrast, the NSE values generated by the PT-JPL model with
optimized parameters are greater than zero at all sites and are near 1 at some sites (US-Syv, US-Ne3, US-
Ro1, and AU-Stp) (Table 3). It is worth noting that the slope and R2 of the regression equation for the
modeled and observed ET varied depending on the model used (original versus optimized parameters).
Therefore, the model with optimized parameters can greatly improve the reliability of PT-JPL in these
different sites.

We selected four typical sites (US-Ne3, US-MMS, AU-Cum, and MX-Lpa) to show the difference temporal var-
iation between observed and estimated ET using the original and optimizedmodels (Figure 6). In these cases,
the optimized model effectively eliminated ET overestimation and exhibited an obvious improvement com-
pared to original model (c- AU-Cum and d-MX-Lpa). The original model had satisfactory performance in the
croplands with relatively homogenized surface and adequate soil moisture (US-Ne3; Figure 6a). Also, the
results in Table S2 in the supporting information indicated that the optimized model performed better at
most sites than the original model even when evaluating against the corrected latent heat fluxes. Thus,
the model parameter uncertainty seems to be the main source of the disagreements between the simulated
and observed (corrected) latent heat fluxes.

Figure 5. Taylor diagram displaying a statistical comparison of model performance using original and optimized
parameters across different sites.
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5. Discussion

Evaluating model uncertainties is a persistent challenge in hydrological modeling [Beven et al., 2008].
Understanding the influence of model parameters and biome types on model response is significant ele-
ments in the development of robust regional and global ET products [Bastola et al., 2011; Brigode et al.,
2013; McCabe et al., 2016]. However, the uncertainties and sensitivity of model parameters may change with
different biomes and climate conditions. Many ecophysiological parameters of the PT-JPL model are needed
to identify the key parameters and optimize them to obtain reliable estimation of ET. Previous studies [Fisher
et al., 2008; Garcia et al., 2013] focused on the model’s sensitivity to forcing data. Nevertheless, specific
biomes and climate zones present different uncertainties and variations in the sensitivity of parameters in

Table 3. Summary of Statistical Performance of the Original and Optimized Model Over Different PFTs During the
Study Perioda

Site Original Optimized

Name ID R2 Slope d Bias RMSE NSE R2 Slope d Bias RMSE NSE

AU-Otw S1 0.31 0.7 37.4 �21.8 38.9 �0.67 0.32 0.49 22.1 3.8 26.9 0.2
US-Ne3 S2 0.84 0.93 11.4 �8.5 21.5 0.8 0.84 0.81 9.7 �1.2 19.4 0.84
US-Ro1 S3 0.79 0.95 7.3 �5 22.7 0.75 0.84 0.82 6.8 1.7 18 0.84
US-Snd S4 0.67 0.65 14.6 3.8 20 0.66 0.7 0.67 13.6 4 19.1 0.69
Yinke S5 0.57 0.48 36.9 14.9 32.8 0.44 0.66 0.53 33.7 13 29.6 0.54
US-MMS S6 0.83 1.14 12.3 �18.4 27 0.45 0.82 0.82 12.6 �4.8 16.2 0.8
US-MOz S7 0.43 0.47 17.5 2.7 26.9 0.42 0.79 0.82 9.2 �2.3 16.5 0.78
US-Oho S8 0.54 0.44 4.2 25.2 46.6 0.32 0.6 0.48 1.8 25.2 44.6 0.38
US-Slt S9 0.62 0.67 14.5 �1 24.3 0.61 0.71 0.72 10.2 1.2 21.2 0.71
US-WCr S10 0.41 0.39 24.1 3.9 35.1 0.41 0.64 0.55 20.2 0.6 27.7 0.63
BR-Sa3 S11 0.55 1 13.5 �13.6 21.1 �0.39 0.49 0.81 16.6 1.5 15.2 0.28
MY-PSO S12 0.69 1.02 �8.8 6.9 16.7 0.42 0.68 1.04 �8.6 4.7 16.2 0.46
CA-Qcu S13 0.78 0.66 �0.9 8.5 13.9 0.62 0.83 0.91 �2.9 4.8 10.5 0.78
CA-SF1 S14 0.58 0.44 7.5 13.2 25.3 0.37 0.79 0.84 2.5 3.6 15 0.78
US-Blk S15 0.48 0.52 6.2 14 28.3 0.31 0.57 0.55 4.9 14 26.5 0.4
US-NC2 S16 0.71 0.95 �10.2 14 29.3 0.51 0.71 0.9 �7.9 16.2 29.1 0.52

US-NR1 S17 0.4 0.39 11.4 25.8 40.3 �0.01 0.5 0.46 9.5 23.5 36.9 0.15

Arou S18 0.81 0.91 �5.3 13.3 19 0.6 0.81 0.9 �3.5 12 18 0.64
AU-Stp S19 0.76 0.76 7.5 �1.9 15.4 0.76 0.77 0.74 5.3 0.9 15.2 0.77
Dongsu S20 0.27 0.63 20.8 �10.9 19.7 �0.74 0.35 0.42 13.4 2.4 12.4 0.31
US-FPe S21 0.7 0.83 3.4 1.6 15.3 0.67 0.73 0.83 3.2 2 14.5 0.71
US-Wkg S22 0.44 0.63 11 �4.2 17.5 0.31 0.47 0.6 6.4 0.9 15.9 0.43
CN-Cha S23 0.6 1.03 7.1 �7.7 25.1 0.23 0.58 0.72 6.4 1 19.1 0.55
JP-Kah S24 0.73 0.95 8.5 �5.7 20.8 0.63 0.71 0.82 8.6 0.6 19.2 0.69
US-Los S25 0.83 1.11 6.5 �9.6 17 0.6 0.83 0.79 7.2 �1.4 11.4 0.82
US-NC1 S26 0.79 0.97 �2.9 4.6 20.4 0.74 0.79 0.89 �2.2 9.2 21.1 0.74
US-SP2 S27 0.43 1.23 23.9 �34.9 43.9 �4.52 0.3 0.52 24.4 �1.4 17.4 0.14
US-Syv S28 0.87 1.02 3.6 �4.3 14.6 0.82 0.87 0.89 3.4 0.6 12.7 0.87
AU-Ade S29 0.28 0.26 52.9 �4.8 30 0.26 0.32 0.3 50.4 �4.9 29.1 0.3
AU-Cum S30 0.43 1.27 4.7 �19 39 �1.89 0.41 0.76 6.8 5.9 22.5 0.04
AU-How S31 0.54 0.77 12.9 9.9 27.1 0.36 0.54 0.77 13.4 9.1 26.9 0.37
AU-Whr S32 0.23 0.9 13 �9.5 23.4 �2.22 0.31 0.55 11.8 3.8 12.8 0.03
JP-Mas S33 0.69 0.82 3.3 11.2 27.3 0.6 0.69 0.78 4.2 13.2 28.1 0.6
US-FR3 S34 0.49 0.9 15.7 �11.5 24.9 �0.08 0.55 0.78 3.6 5.6 18.4 0.41
US-KS2 S35 0.59 1.15 14.6 �26.3 40.9 �0.6 0.57 0.81 18.4 �3.5 23.9 0.45
US-Ton S36 0.25 0.57 22.3 �10.3 27.7 �0.39 0.32 0.33 15.6 3.1 19.7 0.3
US-Var S37 0.35 0.48 16.7 �4.4 22.5 0.28 0.37 0.41 13.6 0.3 21.1 0.37
AU-ASM S38 0.23 0.48 16.6 �10.3 18.6 �0.5 0.56 0.31 5.2 3.2 11.7 0.41
AU-Cpr S39 0.18 0.77 20.9 �16.7 24.2 �4.28 0.46 0.56 7.3 1 8 0.43
MX-Lpa S40 0.18 0.73 46.5 �42.2 47 �11.42 0.35 0.51 10.7 �2.9 11.8 0.22
US-Ivo S41 0.33 0.6 7.7 4.3 19.2 0.07 0.65 0.9 2.9 0.1 13.2 0.56
US-SRC S42 0.51 0.97 9.6 �9.2 16 �0.38 0.62 0.57 3.1 2.8 8.9 0.57
US-SRM S43 0.26 0.49 13.6 �4 15.7 �0.01 0.21 0.35 8.8 3.3 14.9 0.08
US-Whs S44 0.54 0.74 11.6 �7.3 16.7 0.33 0.41 0.45 5.3 3.8 16.2 0.38

aThe bold font represents the best performance and d represents the intercept.
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the PT-JPL model due to the main driving forces (i.e., net radiation, RH, and vegetation index) [Yao et al., 2013,
2014; Fisher et al., 2008; Feng et al., 2015]. Thus, it may be more meaningful to investigate the sensitivity of
parameters across different biomes and climate conditions. Our results indicated that three of the eight para-
meters β, m1, and Topt are sensitive to the simulated ET of the PT-JPL model across different biomes. These
three parameters are related to the process of energy constraint, soil evaporation, and plant growing
temperature.

Overall, we attempted to quantify the uncertainty of the PT-JPL model at multiple sites across diverse biomes
for the purpose of optimizing the sensitive parameters to the specific biomes. At the sites with low vegetative
cover (low NDVI and EVI) and low precipitation (e.g., Dongsu and MX-Lpa), β was more sensitive than other
parameters in the PT-JPL model. This is because under these conditions, the soil receives more energy than
the canopy during the process of energy (net radiation) partition. Hence, the total ET is dominated by soil eva-
poration (ETs) and restricted by the constraint variable fsm (based on β). Therefore, the variation of β has the
most significant impact on the ETs simulation in arid areas with low vegetation. Our results are consistent with
previous studies where fsm played a primary role in model uncertainty in drylands [Garcia et al., 2013]. Bio-
constraints (i.e., fg, fm, and fT) dominate the canopy transpiration in relatively humid regions with high
NDVI. These bio-constraints are directly reflected in the parameters m1, b1, m2, b2, and Topt (Table 2). We
found thatm1 had a large influence on themodel performance at most sites with good vegetative conditions,
such as Arou, US-Ro1, and the forest sites. Arou is alpine grasslands on Qinghai-Tibetan Plateau with ade-
quate moisture, and the ET is strongly limited by energy [Zhu et al., 2016]. This may be the reasonm1 contrib-
uted a peak SI to the model performance at most sites. Thus, it is crucial to use a proper value of m1 to
estimate ET with the PT-JPL model. Furthermore, Topt is a basic parameter to the bio-constraint variable fT
and ranked second in the first-order SI in the most forest biomes. However, we noted that the total SI of fT
was surpassed by β in the ENF sites. This may be a result of the increasing interaction impact of β with specific
site conditions (e.g., CA-SF1 site with relatively low EVI and precipitation).

Although the performance of the PT-JPL model was evaluated as good compared to other remote sensing ET
models in recent studies [McCabe et al., 2016; Ershadi et al., 2014; Zhu et al., 2016), data are insufficient to
demonstrate that it provides consistently good simulations over a wide range of biomes and different tem-
poral scales [Vinukollu et al., 2011; Mallick et al., 2013; Garcia et al., 2013; Michel et al., 2016]. Generally, poorer
performance has been shown byMcCabe et al. [2016] and Garcia et al. [2013] for arid regions. Our evaluation

Figure 6. Comparison LE of observed, original model and optimizedmodel in four different sites during the study period. (a) US-Ne3 site (croplands), (b) US-MMS site
(deciduous broadleaf forest), (c) AU-Cum (savannas), and (d) MX-Lpa (shrublands).
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also indicates similar poor performance at Dongsu (arid grasslands, overestimated), AU-Cpr (shrublands,
overestimated), and US-NR1 (ENF, underestimated) (Figures 5 and 6 and Table 3). The original PT-JPL model
seems most suitable for regions with relatively homogenized surfaces and sufficient moisture, such as Arou
and US-Ro1.

The large variability in the SI of some of the model parameters (Figure 2) indicates that the use of constant
values to model under different biomes for regional and global applications is inappropriate. Thus, it is critical
to optimize the key parameters of the PT-JPL model for different environments. We constructed a Bayesian
inference framework to optimize the key parameters using the flux data sets simultaneously. But, an impor-
tant issue in optimization is equifinality, where the same result might be caused by different parameter com-
binations [Franks et al., 1997; Zhu et al., 2014]. Engeland et al. [2006], Fenicia et al. [2007], Moussa and
Chahinian [2009], and Hrachowitz et al. [2013] have indicated that multiple objective calibration and data sets
could provide effective optimization against equifinality. To minimize the problem of equifinality, we ran the
model for different sites and performed the DE-MC method searches for the parameter space using
different chains.

As shown in Figure 3, the parameterm1 (related to canopy resistance) seemed to be optimized with relatively
narrow uncertainties (95% posterior distribution performed stably between 0.6 to 1.4) at different sites. The
original model slightly overestimated m1 at some specific sites, especially in the forest biomes with relative
higher canopy (DBF, EBF, and MF). Similar performance has been reported by Mallick et al. [2013], with the
mean bias revealing a consistent overestimation at a majority of sites. Our model with optimized parameters
addressed this problem by reducing the value of the most sensitive parameter (m1) from an original constant
value of 1.36 to an optimized value of the posterior distribution in 95% high-probability intervals (Table 2 and
Figures 3 and 4). The results indicate that the strength of energy constraints (i.e., fg, fm, and fT) on the canopy
in the original PT-JPL model may not be sufficient, especially in the DBF and MF.

To avoid the calibrations being dependent on each site, Garcia et al. [2013] and Yao et al. [2013, 2014] set the
optimum temperature (Topt) at 25°C, rather than being dynamically calculated as in the original PT-JPL model
[Fisher et al., 2008; Ershadi et al., 2014]. Although this value has been used in many modeling studies across
different biomes [Yuan et al., 2010], the optimum vegetation temperature Topt should be more reflective of
the specific region [Cui, 2013]. The original calculation of Topt was prone to be unreliable in some specific
biomes and climate conditions, such as Mediterranean semiarid environments [Garcia et al., 2013]. For our
study, we obtained optimized Topt sets (Figure 3) for each site. Figure 4 illustrates that these had good corre-
lation to the measured mean air temperature (growing season), with the optimized model showing a slight
improvement over the original model (Figures 5 and 6). This provides a convenient way to simultaneously run
the model at different biomes when the air temperature data are available.

The parameter β is a unique constant parameter that influences the estimation of soil evaporation. As has
long been discussed [Garcia et al., 2013], the value of β should be fine-tuned in different regions to obtain
reliable results, and Fisher et al. [2008] developed the original PT-JPL model and applied β =1 kPa, but Mu
et al. [2007] used β = 0.1 kPa for a global application. ET estimates using the original PT-JPL model
(β =1 kPa) did not provide meaningful results in specific regions, such as in Mediterranean grasslands
[Garcia et al., 2013] and drylands (Dongsu, AU-ASM, AU-Cpr, MX-Lpa, etc.) (Figures 5 and 6 and Table 3).
Table 3 and Figure 5 indicate the results when model was run with a median value of 95% high-probability
intervals after optimization. β was reduced at most sites and diverged more regularly in some arid regions,
suggesting that the control of the soil moisture stress derived from atmospheric conditions (i.e., relative
humidity or VPD) should be strengthened. For example, at the AU-Cpr site (the South Australian shrublands
with BSk climate and low vegetation cover), β was revised to a minimal value (0.1). This may indicate that the
contribution from ETs to total ET was strongly limited by the soil moisture as depicted by β and atmospheric
conditions [Mu et al., 2007; Yao et al., 2013]. Even at the Dongsu site (Grasslands with annual precipitation
under 300mm) (Table 1), the optimized β value decreased from the original (Figure 3).

Fundamentally, the SA and optimization method in this study could identify and optimize the common key
parametersof thePT-JPLmodel acrossdifferentbiomes. Furthermore, themain sourceofmodel error is attribu-
table to the model structure once the parameters have been optimized using the DE-MC method [Zhu et al.,
2014], although the performance of the optimized model varied by region. Thus, the optimization of the
PT-JPLmodel can lead tomore robust ET flux estimation and reduce the uncertainty in regional ET estimation.
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6. Conclusions

To generate a reliable long-term regional/global terrestrial ET product using the PT-JPL model, special atten-
tion should be paid on calibrating these parameters. As a result, our model with optimized parameters per-
formed better than the original model at the selected study sites, especially in arid savannas and shrublands.

In the arid environment, the lower value of β provides a more intense constraint on soil evaporation that bet-
ter depicts the limiting process of soil moisture. The parameter m1, an important component of the model’s
interim variable fg, plays a role to restrain the canopy energy to the actual ET. The optimized median value of
m1 was slightly lower than the value provided by the original model in a majority of biomes. This illustrates
that the actual ET from the canopy in these biomes are under a stronger constraint than represented in the
original model. Another canopy constraint parameter, Topt, is also sensitive to the model across the different
biomes. The optimized value at most sites was set around 25°C corresponding to the original model. But for a
few sites, located in high altitudes or latitude with cold climate condition, the optimized value of Topt was set
in a lower range (10°C to 15°C). This result is nearer a realistic environmental temperature in the specific
biomes and shows a more meaningful optimum temperature to the vegetation that grows in cold weather.
The optimized values of Topt obtained by our procedure also exhibited good agreement with those calcu-
lated using the dynamic method (Figure 4), suggesting that our optimized values are reasonable.
Therefore, to obtain reliable global/regional ET products, the values of Topt should be based on specific
biomes and climate conditions rather than using a constant value (i.e., 25°C).

We suggest that the PT-JPL model be used with different parameter sets to obtain a more reliable output at
the daily temporal scale, particularly in calculating the ET for the cold and arid biomes. In addition, all of the
optimizations in this paper were focused on the parameter itself rather than the model structure.
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